Inertia-Controlling Methods for General Quadratic Programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertia-Controlling Methods for General Quadratic Programming

Active-set quadratic programming (QP) methods use a working set to define the search direction and multiplier estimates. In the method proposed by Fletcher in 1971, and in several subsequent mathematically equivalent methods, the working set is chosen to control the inertia of the reduced Hessian, which is never permitted to have more than one nonpositive eigenvalue. (We call such methods inert...

متن کامل

On the Identification of Local Minimizers in Inertia-controlling Methods for Quadratic Programming∗

The verification of a local minimizer of a general (i.e., nonconvex) quadratic program is in general an NP-hard problem. The difficulty concerns the optimality of certain points (which we call dead points) at which the first-order necessary conditions for optimality are satisfied, but strict complementarity does not hold. One important class of methods for solving general quadratic programming ...

متن کامل

Methods for convex and general quadratic programming

Computational methods are considered for finding a point that satisfies the secondorder necessary conditions for a general (possibly nonconvex) quadratic program (QP). The first part of the paper defines a framework for the formulation and analysis of feasible-point active-set methods for QP. This framework defines a class of methods in which a primal-dual search pair is the solution of an equa...

متن کامل

Sequential Quadratic Programming Methods ∗

In his 1963 PhD thesis, Wilson proposed the first sequential quadratic programming (SQP) method for the solution of constrained nonlinear optimization problems. In the intervening 48 years, SQP methods have evolved into a powerful and effective class of methods for a wide range of optimization problems. We review some of the most prominent developments in SQP methods since 1963 and discuss the ...

متن کامل

Partial Lagrangian relaxation for general quadratic programming

We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Review

سال: 1991

ISSN: 0036-1445,1095-7200

DOI: 10.1137/1033001